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ABSTRACT

TheQ10 value represents the soil respiration sensitivity to temperature often used for the parameterization

of the soil decomposition process has been assumed to be a constant in conventional numerical models,

whereas it exhibits significant spatial and temporal variation in the observations. This study develops a new

parameterization method for determining Q10 by considering the soil respiration dependence on soil tem-

perature and moisture obtained by multiple regression for each vegetation type. This study further investi-

gates the impacts of the new parameterization on the global terrestrial carbon flux. Our results show that a

nonuniform spatial distribution ofQ10 tends to better represent the dependence of the soil respiration process

on heterogeneous surface vegetation type compared with the control simulation using a uniform Q10.

Moreover, it tends to improve the simulation of the relationship between soil respiration and soil temperature

and moisture, particularly over cold and dry regions. The modification has an impact on the soil respiration

and carbon decomposition process, which changes gross primary production (GPP) through controlling nu-

trient assimilation from soil to vegetation. It leads to a realistic spatial distribution of GPP, particularly over

high latitudes where the original model has a significant underestimation bias. Improvement in the spatial

distribution of GPP leads to a substantial reduction of global mean GPP bias compared with the in situ

observation-based reference data. The results highlight that the enhanced sensitivity of soil respiration to the

subsurface soil temperature and moisture introduced by the nonuniform spatial distribution of Q10 has

contributed to improving the simulation of the terrestrial carbon fluxes and the global carbon cycle.

1. Introduction

Vegetated land surface affects climate (Foley et al.

1998; Sellers et al. 1986) and is affected by climate sig-

nificantly (Bonan 2008), forming complex interac-

tions and feedback loops critical to climate change

(Friedlingstein et al. 2006; Gregory et al. 2009). The land

surface components of Earth system models (ESMs)

have evolved from only representing biophysical pro-

cesses (i.e., hydrology and energy cycling) to including

biogeochemical processes, such as dynamic vegetation

change and carbon and nutrient cycles driven by eco-

systems (Oleson et al. 2013; Sitch et al. 2003; Wang et al.

2010). The carbon balance of terrestrial ecosystems is

the result of the balance between carbon uptake and loss

by plants and soil respiration Rs (Beer et al. 2010; Malhi

et al. 1999; Le Quéré et al. 2009; Luyssaert et al. 2007;

Trumbore 2006). Lateral carbon fluxes by erosion and

transport by aquatic continuum are also known to be

significant in closing the global carbon budget (Regnier

et al. 2013). Which terrestrial ecosystems act dominantly

as sinks or sources has been a subject of considerable

interest in studies of future climate change. Precise

evaluations for each sink and source component and their

responses to environmental factors are essential for reli-

able projection of future climate change by ESMs.

Future climate change projection by various ESMs

driven by identical anthropogenic emissions is diverse and

highly uncertain in the prediction of atmospheric CO2

concentration (Friedlingstein et al. 2006, 2014; Hoffman

et al. 2014). Many previous studies (Friedlingstein et al.

2006; Hoffman et al. 2014; Anav et al. 2013; Arora et al.

2013; Friedlingstein et al. 2014) suggested that the large

spread of CO2 concentration among the ESM simula-

tions should be attributed to the difference in carbon

cycle over land rather than over ocean. In particular,

one of the main causes seems to be related to our

poor knowledge of carbon exchange by soil, leading toCorresponding author: Myong-In Lee, milee@unist.ac.kr
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significant diversity among the model simulations (Todd-

Brown et al. 2013).

Microbial decomposition of soil organic matter

produces a major carbon flux from the subsurface bio-

sphere. Previous studies investigated the response of Rs

under global warming, and most of them projected the

warming would accelerate the release of CO2 from soil

in future (Cox et al. 2000; Dufresne et al. 2002;

Friedlingstein et al. 2003; Suseela et al. 2012). However,

the amplitude of soil decomposition process has not

been quantified through direct field measurements in

the global domain. Because of a lack of in situ data, it

is derived indirectly such as from subsurface soil tem-

perature, soil moisture, soil type, and other factors

(Koizumi et al. 2010; Zhou et al. 2009; Xu and Qi 2001;

Qi et al. 2002), which contain large uncertainties (Suseela

et al. 2012). Luo et al. (2016) suggested that the optimal

calibration of the parameters is needed based on obser-

vations in current ESMs. The reduction of uncertainties

in the soil biogeochemical process remains a challenge for

the ESM modeling community.

Soil respiration is considered a significant source of

CO2 from terrestrial ecosystems. Recent studies suggest

that CO2 emission change by soil should be largely

driven by surface temperature change (Bond-Lamberty

and Thomson 2010; Hursh et al. 2017). At global, re-

gional, and local scales, temperature andmoisture in the

subsurface soil are considered the most important abi-

otic parameters determining Rs (Kutsch et al. 2009).

Empirical response functions based on heterogeneous

field measurements are commonly used to derive annual

estimates of Rs (Tang and Baldocchi 2005).

The sensitivity of Rs to temperature, the so-called Q10

value, is required for parameterizing the soil decomposi-

tion process. Whether this value is a global constant or

variable in space is still under debate and the conclusions

from the previous studies are diverse, which reflect our

limited understanding to the soil respiration process. For

example, Mahecha et al. (2010) suggested that the Q10

value is independent of mean annual temperature and the

type of biomes. Karhu et al. (2014) also mentioned that

the Q10 is approximately a global constant of about 1.4,

which is mostly supported by observed values obtained

in the high-latitude regions in the Northern Hemisphere

(NH) in their study. Other studies, however, suggested

that Q10 may vary in space (Zhou et al. 2009; Xu and Qi

2001; Qi et al. 2002). Belay-Tedla et al. (2009) suggested

that the global warming–induced changes in plant growth

and vegetation types can influence the quality and quan-

tity of substrates considerably, which in turn regulates the

responses of soil respiratory carbon release to rising

temperature. All the abiotic and biotic factors such as soil

temperature (Lloyd and Taylor 1994; Kirschbaum 1995;

Luo et al. 2001), moisture (Davidson et al. 1998;

Reichstein et al. 2002; Hui and Luo 2004), and soil or-

ganic matter (Taylor et al. 1989; Liski et al. 1999; Wan

and Luo 2003) are heterogeneous, showing substantial

spatial variation globally. Accordingly, estimated Q10

frommeasured soil respiration possibly varies at various

geographic locations (Xu and Qi 2001).

Based on the aforementioned studies, Zhou et al. (2009)

developed an inverse model to retrieve the global pattern

of heterogeneous Q10 values by assimilating soil organic

carbon data with a process-based biogeochemical model.

They suggested that spatial distribution of Q10 values

changes according to vegetation type, with an increasing

tendency as latitude increases. The impact on the estima-

tion of carbon release due to Q10 variation in space is a

significant change of approximately 25%–40% compared

with the use of a constant Q10 value in Zhou et al. (2009).

This result suggests that the determination of Q10 value is

important for the simulation of carbon–climate feedback

and future climate change. A few land surface models re-

cently attempted to specify differentQ10 values for the soil

decomposition rate depending on the vegetation type (e.g.,

Brovkin et al. 2012; Schaphoff et al. 2018), emphasizing the

importance of Q10 variation in space. However, most ad-

vanced ESMs that participated in phase 5 of the Coupled

Model Intercomparison Project (CMIP5) still use a glob-

ally constant Q10 value in the dynamic global vegetation

models (Anav et al. 2013; Todd-Brown et al. 2013). In this

case, the sensitivity of subsurface carbon flux under global

warming condition would not be reflected adequately in

the model simulation.

Motivated by the above, this study developed a new

parameterization method for determining Q10 by consid-

ering the dependence of soil respiration on soil tempera-

ture, moisture, and the vegetation type, the relationship of

which was obtained from multiple regression of the refer-

ence soil respiration data with those two predictors for each

vegetation type. The Community Land Model, version 4

(CLM4), has the parameterization of the interactive carbon

and nitrogen (C–N) cycle for the dynamic vegetation

model, which was used to derive realistic spatial distri-

butions of Q10. Moreover, the realistic soil carbon decom-

position processes affect not only Rs but also primary

production by improving nitrogen assimilation from soil to

vegetation. This study further investigates the impacts of

the new parameterization on the global carbon cycle.

Section 2 describes the observation andmodeling data

used in this study and the modeling method used to

obtain the distribution of Q10. Section 3 provides the

results from the offline dynamic vegetation model tests

with prescribed atmospheric states. This study examines

particularly on the direct impacts of the modified Q10

parameterization on soil respiration and consequent
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changes in carbon fluxes by terrestrial vegetation. A

summary and further discussion are provided in section 4.

2. Data, methods, and experiments

a. Data

FLUXNET is a global network of micrometeorologi-

cal tower sites. It provides the global distribution of carbon

andwater fluxes and its temporal variation in the vegetated

land surface, which were derived from upscaling eddy co-

variance measurements at the flux tower using a statistical

machine-learning algorithm. This study used the gross

primary production (GPP) products from the FLUXNET-

MTE (Multi Tree Ensemble) data (hereafter simply

FLUXNET; Jung et al. 2009) as reference for the model

validation. The data provide monthly GPP over the

global domain gridded at 0.58 3 0.58 (latitude–longitude)

horizontal resolution for 23 years (1983–2009).

For the model validation, this study also used the

GPP and net primary production (NPP) derived from

the Moderate Resolution Imaging Spectroradiometer

(MODIS) satellite measurements. The basis for de-

riving plant productivity from satellites is based on the

plant physiological assumption that the NPP is pro-

portional to the amount of solar energy absorbed by

plants over a growing season (Monteith 1972). The

MODIS GPP is a cumulative composite of daily values

in 8-day interval derived by multiplying the radiation

use efficiency parameter and the absorbed photosyn-

thetically active radiation (APAR), in which the for-

mer is determined by the Biome Properties Lookup

Table (BPLUT) data model depending on vegetation

type, daily minimum temperature, and vapor pressure

deficit (VPD) limitation, and the latter is estimated by

the satellite-derived the fractional photosynthetically

active radiation (FPAR) and the incident photosyn-

thetically active radiation (PAR) produced by NASA

Global Modeling and Assimilation Office (GMAO)

atmospheric reanalysis data. The MODIS NPP is

quantified by subtracting autotropic respiration Ra from

GPP. The term Ra consists of maintenance (Rm) and

growth (Rg) respiration extracted from the vegetation-

type dependent BPLUT. Interested readers refer to the

document for the MODIS GPP and NPP version 3.0 al-

gorithm for more detail (available at https://lpdaac.usgs.

gov/sites/default/files/public/product_documentation/

mod17_user_guide.pdf). The MODIS GPP and NPP

data were gridded for the global domain at 0.58 3 0.58

horizontal resolution for this study, which were originally

from MODIS17A3 GPP and NPP products in HDF EOS

(Hierarchical Data Format–Earth Observing System)

format with a native resolution of 1 km (Running

et al. 2004).

Although the MODIS GPP and NPP products may

not be regarded as accurate as the in situ observations,

previous studies indicated that they are consistent

well with those from actual ground-based observations

(Zhao et al. 2005; Kim et al. 2017). Comparing GPP

between in situ observation-based FLUXNET and

satellite-based MODIS, the two datasets show a minor

difference for the overlapping period (2000–06). The

global GPP of FLUXNET is 101.13 gCm22 month21

and that of MODIS is 100.51 gCm22 month21, which is

comparable with a negligible difference of less than 1%

compared to the total value.

Simulations of Rs by CLM4 were verified using the

gridded reanalysis dataset from Hashimoto et al. (2015),

which has the data period of 1983–2005. The data were

also used for the parameterization of soil respiration in

this study, as will be described in detail in section 2c.

Although directly observed soil respiration is available

from version 3 of the Soil Respiration Database (SRDB;

Bond-Lamberty and Thomson 2010), it has limited sam-

pling for boreal cold regions (i.e., tundra and northern

Siberian) as well as unpopulated regions in the tropics,

covering a significant portion of the global biosphere. The

data from Hashimoto et al. were derived using SRDB

data and the empirical soil respiration model with speci-

fied climate conditions for surface air temperature and

precipitation. The soil respirationmodel used inHashimoto

et al. (2015) was modified and updated from the original

version of Raich et al. (2002). Global land use data in a

synergetic land-cover product (SYNMAP) (Jung et al.

2006) using a Bayesian calibration scheme were used to

determine the best parameter set for deriving the climate-

driven model of soil respiration. The climate-forcing data

were obtained fromCRU, version 3.21, climate data (Jones

and Harris 2013). These data were applied monthly at a

spatial resolution of 0.58 latitude 3 0.58 longitude. All the

data were regridded onto 1.98 3 2.58 latitude–longitude

grids for comparison with the CLM4 simulation at this

resolution.

b. Soil respiration parameterization

Most dynamic vegetation models implemented in cur-

rent ESMs, including CLM4, adopt a simple type of empir-

ical equation for Rs, which is proportional to the soil

decomposition flux of carbon at the root zone. Soil de-

composition process in CLM4 is tracking organic material

from plant pools to the soil carbon pools. Soil carbon (C)

pools consist of coarse woody debris (CWD), three litter

pools, and four soil organic matter (SOM) pools, all for

describinga complexdecomposition cascade structurewithin

soil. Each soil carbon pool is characterized by different

1 JANUARY 2019 K IM ET AL . 129

https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod17_user_guide.pdf
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod17_user_guide.pdf
https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/mod17_user_guide.pdf


turnover time and respired fraction, and also discretized in

vertical to represent the vertical advection and diffusion

processes. Soil mineral nitrogen (N) experiences minerali-

zation or immobilization betweenorganic nitrogen (N) pools

analogously defined as in the paths for the C pools.

Based on Thornton and Rosenbloom (2005), the de-

composition flux D in CLM4 is calculated as

D
n
5

C
n
R

scalar

Dt
(1:02R

n
2CN

n
), (1)

where the subscript n is designated for the nth discretized

carbon pool; Cn is the carbon amount; Rscalar is the rate

scalar, which is a function of soil temperature andmoisture;

Dt is the time step in themodel; andRn is the soil respiration

fraction formetabolic transfer to the downstream (n1 1)th

pool, specified for each carbon pool with different con-

stant values. CNn represents the C:N ratio of the (n1 1)th

pool divided by the C:N ratio of the nth pool, and the C:N

ratio is specified with different constant values for each

carbon pool in CLM4. Therefore, the decomposition flux is

state-dependent and dynamically changing by soil carbon

amount and the environmental modifier Rscalar.

In (1), Rscalar represents the effects of the physical

environmental condition such as soil temperature Tscalar

and moisture Wscalar, further formulated as

R
scalar

5T
scalar

W
scalar

, (2)

where Tscalar is basically an exponential function of

temperature from van’t Hoff (1898). It is implemented

in CLM4 as in the following equation:

T
scalar

5Q
[(Tj2Tref)/10]

10 , (3)

where Tj is the temperature at the jth soil level, and Tref is

the reference temperature of 258C. CLM4 considers tem-

perature for the top five soil levels as representing the root

zone (;29-cmdepth);Q10 is specified as a constant value of

1.5 in the standard CLM4 model. The moisture scalar

Wscalar is based on thework ofAndren andPaustian (1987),

who describe the water potential for soil decomposition as

W
scalar

5 �
5

j51

log (C
min

/C
j
)

log (C
min

/C
max

)
, (4)

whereCj is the soil water potential at the level j defined

from the exponential of volumetric soil moisture

(m3m23), Cmax is the maximum potential depending on

soil type, and Cmin is the minimum value of 210MPa,

regardless of soil type. The range of Wscalar is 0–1 by

setting to 0 when the Cj is below Cmin, and setting to 1

when Cj is above Cmax.

c. Q10 parameterization

For improving the Rs parameterization in CLM4, this

study considers a spatiotemporal change ofQ10 instead of

a uniform constant in (3). Although the decomposition

rate in CLM4 includes the dependency on soil tempera-

ture andmoisture as in (2),Q10 should be instantaneously

varying at the given soil temperature andmoisture, which

is intended to provide more enhanced dependency be-

tween soil respiration and abiotic environmental condi-

tion. In our parameterization, this relationship also depends

on plant function types.

For achieving this, we developed amultiple regression

model for Q10 based on Qi et al. (2002), which assumes

that the rate of Rs change depends entirely on soil

temperature T and soil moisture M. These two physical

variables are well-known important factors for soil bi-

ological processes. The fractional instantaneous change

of Rs by soil temperature q is defined as

q(T,M)5
1

R
s

dR
s

dT
. (5)

We define Q10 as the relative change of Rs at a tem-

perature increase of 108C, which can be described in the

following equations:

Q
10
(T,M)5

R
s
(T1 5,X)

R
s
(T2 5,X)

and (6)

Q
10
5 exp

�ðT15

T25

q(T,X) dT

�
, (7)

where X is any additional independent variable to pre-

dict Rs. In this case, only soil moisture is considered.

From (7), Q10 is a monotonic function of q, and the

factor affecting q also influences Q10. Therefore, the

change of Rs is decomposed into the change by tem-

perature and the change by moisture:

dR
s

dT
5

›R
s
(T ,M)

›M

dM

dT
1

›R
s
(T,M)

›T
. (8)

Inserting (8) into (5), the equation for q is rewritten as

q(T,M)5
1

R
s

�
›R

s
(T,M)

›M

dM

dT
1

›R
s
(T,M)

›T

�
, (9)

where dM/dT 5 21/2.2 5 20.455, as suggested by Xu

and Qi (2001). Although dM/dT can vary in space and

time, this study applied a constant value globally due

to a lack of subsurface soil observations. Through a

multiple regression analysis, the relationships between

Rs and T and between Rs andM were obtained for each
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plant function type (PFT). CLM4 has 17 different PFTs.

The most dominant PFT was used for the given grid cell

when it was a mixture of multiple PFTs.

The parameterization also requires the dependence of

soil respiration on subsurface temperature and moisture;

these data are also not available from in situ observations.

To obtain these variables, this study conducted the land

surface reanalysis for recent 30 years (1981–2010), using

the offline land surface model driven by observed meteo-

rological forcing data archived by Sheffield et al. (2006).

The 3-hourly forcing data by Sheffield et al. (2006) consist

of the National Centers for Environmental Prediction

(NCEP)–National Center for Atmospheric Research

(NCAR) reanalysis data (Kalnay et al. 1996), which were

corrected with independent observations. For precipita-

tion, the daily Global Precipitation Climatology Project

(GPCP) (Huffman et al. 2001) data were processed into

the 3-hourly data using the Tropical Rainfall Measuring

Mission (TRMM) (Huffman et al. 2003) 3B42RT but

constraining daily mean amount from GPCP. Surface

temperature was constrained by the observation from the

monthly Climatic Research Unit (CRU) 2.0 product

(Mitchell et al. 2004). The observed radiation was also

used from the monthly NASA Langley surface radiation

budget (Stackhouse et al. 2004) data. Remaining mete-

orological conditions such as surface wind and humidity

were from the NCEP–NCAR atmospheric reanalysis.

Interested readers refer to Sheffield et al. (2006) for the

detail. Using this 3-hourly forcing data, this study in-

tegrated the offline CLM4model with 3-hourly time steps

and at a 0.58 3 0.58 spatial resolution for 28 years (1983–

2010).

As there might be large uncertainty in the simulation

of subsurface soil temperature and moisture conditions,

we examined the sensitivity to the observed meteoro-

logical forcing data used in the offline land surface

model. Figure 1 shows the comparison of r2 values for

the two different multiple regression models for soil

respiration reanalysis from Hashimoto et al., one with

the soil temperature and moisture from the multimodel

ensemble average of 13 Global Soil Wetness Project

(GSWP2) land surface model outputs (Dirmeyer 2006),

and the other with those from the offline CLM4 model

outputs. In most vegetation types, the regression by soil

temperature and moisture tends to exhibit high values

close to 1. The regression results are better than they are

when the GSWP2 multimodel ensemble average was

applied to the multiple regression. This difference is attrib-

uted mostly to a better quality of forcing data by Sheffield

FIG. 1. Comparison of r2 values in the multiple regression of soil

respiration at each plant function type (PFT) with soil temperature

and moisture obtained from (a) the ensemble average of 13 Global

Soil Wetness Project (GSWP2) land surface model outputs for 10

years (1986–95) (gray bars) and (b) the offline CLM4model output

for 28 years (1983–2010) forced by Sheffield et al. (2006) data

(red bars).

TABLE 1.Multiple regression equations for soil respiration for each plant function type;M indicates the volumetric soil moisture (m3m23)

and T the soil temperature (8C).

Plant functional type Equations

Needleleaf evergreen temperate tree 0.002 055M 2 0.007 19 1 0.002 055T 2 0.002 18

Needleleaf evergreen boreal tree 0.002 546 3M2 0.007 86 1 0.002 546T2 0.002 17

Needleleaf deciduous boreal tree 0.002 314 4M 2 0.0741 1 0.002 413T 2 0.002 23

Broadleaf evergreen tropical tree 0.001 135 0M 1 0.0736 1 0.001 135T 1 0.0148

Broadleaf evergreen temperate tree 0.000 794M 1 0.059 93 1 0.007 94T 1 0.002 70

Broadleaf deciduous tropical tree 0.002 871M 2 0.170 61 20.002 87T 1 0.139 927

Broadleaf deciduous temperate tree 0.000 772M 1 0.074 62 1 0.000 77T 1 0.011 15

Broadleaf deciduous boreal tree 0.002 546M 2 0.007 862 1 0.002 54T 2 0.002 17

Broadleaf evergreen shrub 0.002 434M 1 0.005 11 1 0.002 38T 2 0.002 731

Broadleaf deciduous temperate shrub 0.001 405M 1 0.005 47 1 0.001 40T 1 0.012 359

Broadleaf deciduous boreal shrub 0.002 546M 1 0.007 86 1 0.002 54T 2 0.002 177

C3 Arctic grass 0.002 134M 1 0.006 28 1 0.002 41T 2 0.002 813

C3 non-Arctic grass 0.001 540M 1 0.004 61 1 0.001 54T 1 0.004 28

C4 grass 0.001 334M 1 0.007 73 1 0.002 41T 2 0.002 254

C3_crop 0.001 315M 1 0.001 045 1 1 0.000 34T 1 0.0106

C3_irrigated 0.001 315M 1 0.001 045 1 1 0.000 34T 1 0.0106

Corn 0.000 348M 1 0.001 045 1 1 0.000 348T 1 0.0390
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et al. (2006), such as the use of daily precipitation data in-

stead of monthly values in GSWP2 and a longer training

period from 1983 to 2010 than was used for GSWP2 data

(1986–95). The r2 value was found to be comparable when

the period of forcing data was reduced. Based on this result,

we used soil respiration data from Hashimoto et al. (2015),

soil temperature and moisture data from the offline simu-

lation using Sheffield data for 28 years to calculate multiple

regression. Table 1 shows the multiple linear regression

equations for soil respiration for each PFTs derived from

this study.

The Q10 multiple regression model developed in this

study has an advantage over the treatment of constant

value in the standard CLM4 model. First, the depen-

dence of Rs on soil moisture and temperature can be

dependent on PFT. In addition, this approach is able to

consider the nonlinear relationship between Rs and the

two major environmental variables of soil temperature

and moisture, supported by recent observational studies

(Davidson et al. 1998; Raich et al. 2002).

d. Experiments

Two sets of offline CLM4 simulations were conducted

with identical meteorological forcing for 23 years

(1983–2005), where the only difference was the specifi-

cation of Q10 in the control run (CTL) and the state-

dependent Q10 for soil temperature and moisture in

every time interval (EXP). The offline CLM4 simula-

tions for GPP and soil respiration were also compared

with those from the fully interactive Community Earth

System Model with Biogeochemistry (CESM-BGC)

simulation that shared the identical land surface model

(i.e., CLM4). The dataset was obtained from Earth

System Grid–Center for Enabling Technologies (ESG-

CET at http://pcmdi9.llnl.gov/). Figure 2 shows the time

average of Q10 values, where the geographical change is

clear according to the dominant PFTs and climate con-

ditions (Fig. 2a). Generally, the regions of lower canopy

plants with cold soil temperatures exhibit significantly

higher values than the default value of 1.5 in CTL

(Fig. 2b). In contrast, the regions of lowerQ10 values are

located at low latitudes in high temperatures, such as the

Amazon and theMaritime Continent. This result suggests

that soil respiration is more sensitive to the change of soil

temperature in boreal vegetated regions in cold climates.

In Table 2, the time-averaged Q10 values obtained from

the EXP run are given for seven major vegetation types.

3. Results

a. Systematic biases of CLM4

The time average of the offline simulation from the

standard run (CTL) in Fig. 3 is generally similar to the fully

interactive integration of the same model in terms of the

spatial bias patterns for GPP andRs, presumably inherited

by the deficiencies in the parameterization of the dynamic

vegetation model. The fully interactive model (CESM-

BGC) used an identical dynamic vegetationmodel with an

FIG. 2. (a) Spatial distribution of time-meanQ10 simulated by the EXP experiment, and (b) the zonal mean of (a).

Red triangle in (a) and gray dashed line in (b) both indicate a constant value of Q10 5 1.5 used in the CTL

experiment.

TABLE 2. Time-averaged Q10 values for seven vegetation types

obtained from the EXP run.

Temperate Boreal Tropical Shrub

Boreal

shrub Grass Crop

1.446 1.762 1.374 1.266 1.918 1.842 2.041

132 JOURNAL OF CL IMATE VOLUME 32

http://pcmdi9.llnl.gov/


interactive C–N cycle (Bonan et al. 2011) as in the case of

CTL, as well as with the global constant Q10. Both simu-

lations (fully coupled and offline) tend to overestimate

GPPover the tropics andunderestimate it in high latitudes.

The bias pattern of Rs is also quite similar with no signifi-

cant difference. The simulated climate in the fully in-

teractive run should be different from the observed climate

condition used to drive the offline CLM4 (not shown),

because of the simulations errors in the fully coupled

simulation. In spite of the difference in the climate condi-

tion, much resemblance in the terrestrial carbon–flux bias

pattern between the two runs suggests that the biases in the

carbon flux are overwhelmed by the deficiencies in the

parameterization of the dynamic vegetation model, rather

than by the differences in the climate condition.

We further compared the GPP simulation by the fully

coupled CLM4 (CESM-BGC) with those by other state-

of-the-art ESMs quantitatively, as well as with the

FLUXNET reference data. Figure 4 shows the global-

and area-averaged GPP values over several latitude belts

from the multimodel ensemble (MME) average of 10

CMIP5 ESMs and the CESM-BGC run. Table 3 presents

the list of 10 ESMs used in this study and their important

features in the terrestrial biogeochemistry. The global

GPP simulated by the MME is 119.28 gCm22 month21,

which is overestimated by 18 gCm22 month21 from the

FLUXNET reference data. Overall, MME shows realis-

tic meridional variation with large values in the tropics

and small values in high latitudes. As identified in previ-

ous studies, however, the ESMs tend to overestimate

FIG. 3. (top) Spatial distributions of (a) annual-meanGPP from the in situ observation-based FLUXNETdata for 23 years (1983–2005),

(b) the simulation bias in the interactive CESM run (CESM minus FLUXNET), and (c) the bias in the offline CTL run (CTL minus

FLUXNET). (bottom) As in the top panel, but for (d) the annual-mean Rs reanalysis from Hashimoto et al. and (e),(f) the simulation

biases in CESM and CTL, respectively. The unit is gCm22 month21.

FIG. 4. Regional average of GPP from FLUXNET (black) for 23

years (1983–2005), the multimodel ensemble (MME) mean simu-

lated by 10 CMIP5 ESMs (gray), and the single model run by

CESM (blue). The plus signs in the gray bars indicate the values

from individual models.
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GPP significantly in the tropics (Shao et al. 2013; Anav

et al. 2013). Global GPP simulated by CESM-BGC is

lower than that by MME (211.53 gCm22 month21). In-

cluding typical biases of overestimation of GPP over

tropical belts (208S–208N), CESM-BGC show tends to

significantly underestimate GPP in the NH high latitudes

(.608N). These systematic biases are a common problem

in the C–N coupled models based on CLM4 (Bonan et al.

2011; Thornton et al. 2009).

By sharing identical land surface model and terrestrial

biogeochemistry, the bias patterns from the offline CTL

run show much resemblance to that from the fully in-

teractive case as shown in Fig. 3, and our analysis and

experiments will be focused more on the offline model

tests in the remaining of this study. In the following

section, the impacts of the variable Q10 parameteriza-

tion by PFT types on soil respiration and GPP will be

discussed.

b. Impacts ofQ10 variation on the carbon fluxes in
CLM4

Figure 5a shows the Rs bias pattern simulated by the

EXP run with respect to the reference soil respiration

data from Hashimoto et al. Comparing with the bias in

the CTL run (Fig. 3f), which shows the uniform pattern

of underestimation in almost every region except central

China, the EXP run produces positive and negative

biases depending on regions, such as larger soil respi-

ration in warm and wet regions in low latitudes and less

respiration in cold and dry regions in high latitudes. The

changes in Rs simulation by EXP are given in Fig. 5b, in

terms of global averaged values as well as area-averaged

values over latitude belts. Overall, the modification to

Q10 tends to increase Rs in most latitude belts, which is

an improvement from CTL, even though the Rs refer-

ence data from Hashimoto et al. (2015) are empirical

and independent of the dynamical simulation by CLM4.

The increase of Rs in most latitude belts can be attrib-

uted to the increase of Q10 in most of the vegetated re-

gions (Fig. 2) from the standard value of 1.5.

Figure 6a compares the GPP bias patterns in CTL and

EXP, and Fig. 6b shows the actual GPP values averaged

over six selected geographical regions (Eurasia, East

Asia, Amazon, Europe, Africa, and North America).

Among the biases, overestimation in the tropics and

underestimation in Eurasia is evident in CTL (Fig. 6a).

Although the spatial structure of bias seems to be quite

similar, implying intrinsic model deficiencies other than

Q10, EXP shows an improvement by reducing biases

such as overestimation in East Asia and China and un-

derestimation in northern Eurasia in CTL (Fig. 6b).

However, underestimation biases in the central part of

NorthAmerica and theAmazon are even larger in EXP.

This change of spatial distribution of GPP is associated

with sensitivity of Rs to soil temperature (Table 4).

Degradation of GPP simulation over Europe is driven

by the temperate plant type where the temperature

sensitivity of Rs tends to decrease. On the other hand,

the northern Eurasian and Chinese regions that have

good improvement of GPP bias in EXP show an en-

hanced relationship between Rs and temperature. This

result indicates that the change ofRs to soil temperature

by Q10 variation affects not only the change in respira-

tion but also the carbon production (GPP) flux.

The improvement in the GPP simulation by the Q10

parameterization is illustrated better in Fig. 6c, which

compares the global and zonal averages of GPP. In the

global average, the overestimated bias is substantially

reduced from 19.11 (CTL) to 11.68 (EXP) gCm22

month21, where the global GPP climatology simulated

by CTL and EXP is 111.24 and 103.81 gCm22 month21,

respectively. Relatively little landmass in the Southern

Hemisphere (608–208S) leads to a smaller GPP values,

with no significant signal of improvement from CTL to

EXP. However, the overestimation bias in the tropics

has been improved significantly (208S– 208S), as well as

FIG. 5. (a) Spatial distribution of Rs bias (gCm22 month21) in

EXP simulation from the reference data from Hashimoto et al.

(b) Comparison of the regional average of Rs between Hashimoto

et al. data (black bars), CTL simulation (red bars), and EXP ex-

periment (blue bars).
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in the midlatitudes (208–608N). In addition, simulated

GPP over high latitudes (608–808N) is improved in EXP

by increasing GPP values in the region.

The variable Q10 in the parameterization of soil de-

composition flux immediately affects the heterotrophic

soil respiration as given by themodel formulations in (2)

and (3). Moreover, this modification changes the plant

assimilation and GPP in the meantime in this carbon–

nitrogen coupled model. A faster (slower) carbon de-

composition rate in themodel tends to increase (decrease)

nitrogen assimilation from soil to vegetation and plants,

thereby increasing (decreasing) GPP. This aspect is illus-

trated well by comparing the turnover time of the soil

carbon, which is defined as the ratio of soil carbon amount

to the net primary production (NPP), between the CTL

and EXP runs (Fig. 7). As shown in Fig. 7, the run with

variable Q10 (EXP) makes shorter turnover time in NH

high latitudes and longer in the tropics compared with the

CTL. It is suggested that enhanced temperature sensitivity

of soil respiration in the high latitudes by variable Q10

tends to decrease activation energy of SOM de-

composition. This leads to a shorter turnover time, which

is supported by previous observational studies (Craine

et al. 2010; Lefèvre et al. 2014). The shorter turnover time

in high latitudes suggests the enhancement of nitrogen

assimilation to vegetation in EXP, thereby enhancing net

primary production by plants.

Note that the simulated turnover time is about 10.2

years as a global average in CTL experiment. This is

relatively shorter than the suggested values ranging from

18.5 to 32 years from the previous observational studies

(e.g., Amundson 2001; Raich and Schlesinger 1992), al-

though the CLM4 model in our offline experiments

tends to reproduce a realistic geographical distribution

of turnover time such as relatively longer turnover time

for the boreal vegetated surface in cold temperature and

shorter time for tropical forest. Our model result is con-

sistent well with that from Todd-Brown et al. (2013),

FIG. 6. (a) Spatial distributions of GPP bias (gCm22 yr2) in the (top) CTL and (bottom) EXP runs comparing with

FLUXNET for 23 years (1983–2005). (b) Regional averages of GPP from FLUXNET (black), CTL (red), and EXP

(blue) in six selected regions, including Eurasia (608–808N, 608E–1808), East Asia (58–608N, 608–1608E), the Amazon

(358S–108N, 808–1608W), Europe (408–708N, 08–608E), Africa (208S–208N, 08–508E), and North America (308–608N,

1208–608W). (c) Global and zonal averages of GPP from FLUXNET (black), CTL (red), and EXP (blue).

TABLE 4. The r2 values between logRs and soil temperature by PFTs in CTL and EXP.

Temperate Boreal Tropical Shrub Boreal shrub Grass Crop

CTL 0.42 0.12 0.34 0.06 0.14 0.38 0.27

EXP 0.36 0.27 0.31 0.05 0.31 0.28 0.37
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who estimated the turnover time for 11 CMIP5 ESMs.

Among the models, the CCSM4 model coupled with

the CLM4 land model exhibited the lowest turn-

over time of about 10 years [See Fig. 2 in Todd-Brown

et al. (2013)]. They attributed this model deficiency

to a significant underestimation of soil carbon in

the model.

Figure 8 compares the distribution of litter carbon

from the two offline simulations. Although the two

patterns look similar, EXP shows more accumulation of

litter carbon in Eurasia. This result is somewhat con-

sistent with the results from the Lund–Potsdam–Jena

(LPJ) Dynamic Global Vegetation Model (DGVM)

with the modified soil decomposition rate depending

on the vegetation type (Gerten et al. 2004; Sitch et al.

2003). In Brovkin et al. (2012), the model experiment

with PFT-dependent decomposition rate simulated

larger litter stock carbon over NH high latitudes. In

spite of differences in model formulations, the consis-

tent result across the models suggests that the varia-

tion of decomposition rate by PFT can modify the

spatial distribution of litter carbon and hence affect the

entire decomposition cascade structure in the subsur-

face layers.

Nitrogen fluxes in the subsurface have also changed

by the Q10 parameterization through carbon–nitrogen

coupling in this model. Figure 9 compares the total ni-

trogen assimilation flux from soil to plants between CTL

and EXP, which is normalized by the global mean value

and averaged over each latitude belt. The result clearly

shows that reduced (increased) nitrogen assimilation

over tropics (over NH high latitudes) corresponds to

reduced (increased) GPP in the region by EXP (Fig. 6c).

The impacts of the spatiotemporal change of Q10 for

GPP simulation are also investigated in Fig. 10, which

indicates the partial correlation between two environ-

mental variables (soil temperature and moisture) and

GPP. As shown in the reference data (Figs. 10a,d), the

interannual variation in GPP over NH high latitudes is

mainly correlated with soil temperature. The regions of

strong seasonal variation of surface temperature such as

in Siberia, Europe, and Alaska show more dominant

impact on the vegetation growth, which can also con-

tribute to the interannual variation of GPP significantly.

In contrast, GPP over subtropics, tropics, and Australia

is controlled more by soil moisture. Within 308S–308N,

the water availability limitation is more critical at the

presence of weak seasonal temperature variation. The

FIG. 7. Spatial distribution of turnover time (years) of soil carbon in (a) CTL and (b) EXP. (c) The difference between EXP and CTL

simulation. The turnover time is defined as the ratio of the soil carbon amount to the net primary production (NPP).

FIG. 8. Spatial distribution of litter carbon (kgC21 m22) in (a) CTL, (b) EXP, and (c) EXP minus CTL.
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seasonal variation of precipitation is a major factor due

to the global monsoon systems, which impacts signifi-

cantly on the vegetation growth and GPP. Overall, the

sensitivity shows a clear regional dependence, which is

also confirmed by previous studies (e.g., Piao et al. 2009;

Nemani et al. 2003). It is also noted that Amazonia is an

exception with weak sensitivity both to temperature and

to moisture, suggesting an important role of radiation

(Piao et al. 2009; Nemani et al. 2003). CTL tends to re-

produce the positive correlation between soil tempera-

ture and GPP in NH high latitudes, although the

amplitude is relatively weaker than the reference data.

On the other hand, CTL shows almost no significant

correlation between soil moisture and GPP. These

biases are also responsible for weaker correlation be-

tween NPP and precipitation over tropical land in the

simulation of CESM-BGC coupled with CLM4 (Kim

et al. 2016). Interestingly, the relationship between two

climatic constraints and GPP is improved by the modi-

fied Q10 parameterization in EXP. The run shows more

enhanced relationship between soil temperature and

GPP in NH high latitudes, as well as significant positive

correlation between soil moisture and GPP over the

subtropics and the tropics (Figs. 10c,f). It suggests that

changeable Q10 with time and space improves the

impacts of soil temperature and moisture on GPP in

CLM4. The modification to the soil process parameter-

ization can affect the rest of the terrestrial carbon cycle

by changing the carbon and nitrogen pools in the soil

system needed for plant nitrogen assimilation.

For detailed investigation of the impact of the Q10

parameterization, this study further investigates the

changes in the simulated terrestrial carbon cycle of each

vegetation type. Figure 11 compares the reference data

and the simulations using two offline runs for GPP, Ra

by plants, and Rs depending on the primary vegetation

type. For the comparisons of GPP and Ra, satellite-

based MODIS data were used as the data separated

GPP and Ra over vegetation areas. In the MODIS data,

the terrestrial carbon cycle is largely contributed to by

vegetation response in tropical and temperate tree re-

gions. Vegetation types with a short canopy height and

trees with deciduous leaves contribute less in terms of

absolute amount of carbon fluxes, although their rel-

ative changes are not trivial. Both CTL and EXP

runs capture these differences appeared in MODIS

in the magnitude of carbon fluxes realistically. Re-

garding the simulation of GPP, EXP tends to reduce

the biases, particularly in temperate, tropical, and

crop zones. EXP also improves the simulation of Ra

in those regions. The improvement is most evident

in Rs, where the simulated values are close to the

observed values in most vegetation types. The

amount ofRs by EXP has been increased in every type

of vegetation from CTL, reaching values closer to

the reference observation data. According to this result,

although the absolute magnitude of Rs is much

smaller compared with that of GPP and Ra, the

modification of Rs by the Q10 parameterization af-

fects the entire terrestrial carbon cycle and improves

their simulations.

4. Summary and concluding remarks

Soil respiration is a crucial process in maintaining

terrestrial carbon cycles. Although its sensitivity to the

physical environmental conditions such as soil temper-

ature andmoisture depends on the type of vegetation, as

supported by observational data, most contemporary

ESMs do not consider this dependence. These models

thereby underestimate the effects of and feedbacks from

soil respiration on terrestrial carbon cycles. Using the

CLM4 land surface model with the interactive C–N

cycle, this study developed a new parameterization

method to consider the spatiotemporal variation of Q10

that represents the sensitivity of soil respiration to the

temperature change for each different vegetation type.

This sensitivity has been treated as constant with a

uniform value regardless of plant type in the original

CLM4 model.

This study first examined the biases in GPP and Rs in

the offline CLM4 simulation, which tended to reproduce

most of the systematic biases appearing in the fully in-

teractive Earth systemmodel simulation of CESM-BGC

that coupled with the identical CLM4 land surface

model. Much resemblance in the terrestrial carbon–flux

bias patterns suggests that the deficiency in the dynamic

FIG. 9. Comparison of nitrogen assimilation from soil to plant

simulated by CTL (red) and EXP (blue). Because of the large

difference in the absolute amount, the values are normalized by

the global mean values and then averaged over each latitude

belts.
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vegetation model is overwhelming the systematic errors

in the model.

The new parameterization changes the simulation of

soil respiration and the rest of terrestrial carbon fluxes

significantly by enhancing the feedback to the plant

production process. The new parameterization calculates

Q10 at every time interval for each location, and this state-

dependent prescription induces the overall increase of soil

respiration in most locations and most vegetation types,

improving spatially uniform negative bias in the original

CLM4 simulation with constantQ10 value.

The simulated sensitivity of soil respiration to soil

temperature and moisture by the new method showed

more realistic features, particularly in the temperate and

cold regions. This changed soil carbon fluxes at the sub-

surface and affected the simulation of GPP, where the

simulation of spatial distribution of GPP has been im-

proved particularly over NH high latitudes with short

canopy heights and over the tropics and warm regions,

including southernAsia and China. Furthermore, the new

Q10 parameterization mainly contributes to the substan-

tial reduction of overestimated global mean GPP bias.

The improved GPP simulation over cold regions was

mostly attributed to the increase in carbon decomposi-

tion in those regions. Because of the advancement of

both respiration and primary production, the carbon

balance between subsurface and surface ecosystems

with soil organic matter and plants was also improved by

the newQ10 parameterization. The observed ratio of soil

respiration to GPP was represented better in the new

simulation, which clearly shows the dependence on the

vegetation type.

FIG. 10. Spatial distribution of partial correlation between (a)–(c)GPP and soil temperature and (d)–(f) GPP and soil

moisture in (a),(d) observations, (b),(e) CTL, and (c),(f) EXP for 30 years.
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The major findings from this study suggest that the

modification of subsurface terrestrial carbon cycle pro-

cesses is important for improving the simulation of

terrestrial carbon fluxes. The parameterization of the

photosynthetic process is still a major term crucially

related to primary production (Bonan and Levis 2010;

Bonan et al. 2011). Previous studies have suggested that

the improvement of canopy processes in the photosyn-

thetic parameter in CLM4 was able to improve the simu-

lation by reducing the overestimation of GPP in the

tropics. Despite the improvement in the photosynthetic

process in theirmodels, respiration processes by plants and

soil are still largely uncertain due to a lack of reliable ob-

servational data and comprehensive studies (Bonan and

Levis 2010; Bonan et al. 2011). For this reason, this study

approached the modification of the soil decomposition

process, aiming to improve the terrestrial carbon cycle.

Still, large uncertainties lie in the formulation of the

respiration process and its parameters. The major limita-

tion in this study is in that, although the parameterization

approach is physically based, actual implementation is not

based on the use of real observation data for soil respi-

ration, temperature, andmoisture in the subsurface layers.

As stated, this study used the Rs data obtained from

Hashimoto et al. (2015) as an alternative, because there

are no real observation data available for the calibration

of the multiple regression models for the vegetation type-

dependent parameterization ofQ10. This seems to be less

ideal as the data were inferred from insufficient in situ

observations and the empirical (statistical) relationship

between Rs and observed surface temperature and pre-

cipitation. Therefore, ourQ10 parameterization hasmuch

room for improvement, when more reliable observations

are available.

This study suggested that the improved soil decom-

position process induces a change in carbon–climate

feedback intensity by changing soil respiration. In ad-

dition, the realistic description of Q10 variation in a

numerical model will reduce the uncertainty of the

magnitude of carbon–climate feedback due to accurate

atmospheric CO2 simulation in ESMs.
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